Tag Archives: design challenges

The Force and Motion of Life

As an Artist Educator, my goal is to deepen the learning experience for students and educators through engaging and innovative project-based learning residencies. In these residencies the scholars participate in hands-on learning experiences that provide opportunities to learn and practice transferable skills. They develop and nurture critical thinking, creative problem solving, collaboration, and communication skills. These skills not only enhance comprehension of the content from their academic classes, but they also apply to their lives outside the classroom.

Design plans for a chain reaction sculpture.

This fall, PAA organized a kinetic sculpture residency hosted at think[box], Case Western Reserve University’s innovation center.  The goal of this collaboration was to integrate the middle school science curriculum content standard into an experiential learning workshop, including content focused on force and motion. Five schools participated, serving approximately 150 students over a one week intensive residency.  Each scholar participated for two full school days in designing and building chain reaction kinetic sculptures at think[box].  Experiential learning opportunities like this provide avenues for students to explore force and motion in a hands-on way; enhancing their ability to incorporate theory into real life examples. Students worked in teams to collaboratively plan out their design based on the materials provided, thinking critically about the relationship between the material and the science.  They continually learned from their mistakes and tested out new methods and materials to come up with creative solutions.

Construction phase

Construction phase at the think[box].

These innovative residencies also provided invaluable teachable moments. I observed instances where the students referenced their own perceived abilities related to force and motion. Many students struggled with their self confidence in their ability to build a working chain reaction sculpture. In particular, one student struggled to recognize her own potential.  At the beginning, she expressed to me that she identified as being “stupid.”  I explained to her that what we are capable of is often determined by our mindset.  With coaching and encouragement she built up the self-esteem to participate in the project. Metaphorically, she is a ball at the top of a ramp filled with potential energy and the support we provide as instructors is the gravitational force that allows the ball to roll down the ramp and change into kinetic energy.  The hands-on learning of force, motion, and chain reaction became a relevant metaphor for her own lack of self-confidence transforming into kinetic energy.

Completed kinetic sculpture

Completed kinetic sculpture

Leave a Comment

Filed under Arts-Integration

Let the Makers Make: Starting Residencies with Design Challenges

Our in-school residencies and summer camp programs usually begin by sharing information about tools and technology, sharing examples of exemplary work, and providing an overview of expectations to students. Although necessary, these activities are often educator-driven with limited hands-on opportunities for students. This summer, when I lead the Innovation and Invention Camps, the Maker Corps interns and I presented a mini design challenge on the first day, following the tool safety exercises and designed to wait to provide further instruction until the following day. This challenge jump-started the process of using materials in unusual, yet functional ways and provided the freedom to explore that I haven’t offered to students on day one in past programs. Click above to see a glimpse of the design challenges from this summer.

Students worked in teams of three to build a unique teeter-totter in 45 minutes using materials that we supplied. Scorecards were presented at the beginning so students knew how points would be awarded. A group critique followed during which students provided feedback. Later in the week, each group of students modified the design they built during the challenge and incorporated it into their final kinetic sculpture, adjusting the design based on suggestions and necessity.

Here are a few keys to success I’ve learned as a result of implementing design challenges this summer:
– Keep the time limited.
– Emphasize that it is ok if the structure doesn’t ‘work’ by the end of the allotted time.
– Encourage exploration.
– Create a scoring system where points can be earned even if it doesn’t ‘work’ to encourage risk-taking while students are experimenting with and exploring different materials.
– Provide only safety advice. Let the designing and building be 100% student-led.
– Try to develop a challenge where the result can be incorporated into a larger final project.

I’m looking for ways to incorporate this type of design challenge into my in-school residencies this academic year. I want to excite and engage the students in our partner schools immediately and leave them looking forward to subsequent sessions. It may be difficult to find ways to successfully integrate this into the first or second 40-50 minute school session (as opposed to the three-hour library sessions we have in the summer) and to find activities that can be completed in short amounts of time and then incorporated into the final project. Some art forms may lend themselves to this more than others, but I consider this my own teacher design challenge.

Leave a Comment

Filed under Summer Programs

When teachers learn … design notes from iterating a project


As I prepare to teach a pinball-inspired kinetic sculpture program for the third time, I think back and realize just how far this project has come and how much I have learned by teaching it. The first iteration of the project consisted of a cardboard base, hot glue and tape for the connections, and a variety of activities where students learned about forces, motion, geometry, and measurement. The goal was for the boards to be able to stand at several different inclines so that the students could experiment with gravity and friction. To accomplish this, PVC pipe legs we provided were interchangeable and they attached to the base with nuts and bolts that penetrated both the PVC and a bracket made of cardboard. The legs fit into a base that was supposed to hold them square. What I learned during the first iteration of this project was that the amount of force applied to the sculpture by the students was greater than the structure I designed could handle. Also, the amount of content I was covering was more than a ten-week residency would allow. Our work in the schools is referred to as residencies. Each residency is one curricular unit that takes place once a week for ten weeks. Despite some setbacks, the students were extremely eager to test variables, they understood forces and motion and had an introduction to math concepts that were several years beyond their grade level. They rose to the challenge and took great pride in their projects.

Fast forward two years. The pinball project was reintroduced to new students after a complete makeover. The cardboard was replaced by pegboard and plywood, the PVC was replaced by a variety of slanted plywood bases, and the tape was replaced by machine screws, nuts, and corner brackets. The focus of the project was on construction, forces, motion, and measurement to ensure that all of the students would really grasp the concepts. There was still experimentation along the way. Several balls were used to experiment and determine the appropriate size and weight for the sculptures the students created.  Additional pieces of wood were also used to prevent the ball from flying off of the board. The project was successful and the students’ work was showcased at the Superelectric Pinball Parlor at 78th Street Studios as part of the monthly art walk.

This year, the goal is to take the project to the next level. There were four key design challenges that were identified last year that I plan to address. The first challenge I identified was that the bases ended up not all being the correct size for the board. In my drawing plans of this year’s project iteration, I’ve included considerations for the slant needed to determine the length of the bases. The second design challenge is finding an appropriate dowel for the peg board.

PAA Program Coordinator Ainsley Buckner fabricates bases for the pinball project using the band saw at the think[box] at Case Western Reserve University.

PAA Program Coordinator Ainsley Buckner fabricates bases for the pinball project using the band saw at the think[box] at Case Western Reserve University.

Previously, the smallest dowel we could find was too thick to fit into the pegboard. This year we will attach paint stirrers to 4″ nails or golf tees (both of which fit into the pegboard) so that the students will be able to create a variety of interchangeable paths for the ball to travel on through their sculpture. In the past, students had one fixed path in their sculptures. The third design challenge to be addressed is the edges of the board. In the plan I have designed, the edges have been altered and a 1/8″ plexi-sheet has been added to

Materials for the current iteration of the pinball project.

Materials for the current iteration of the pinball project.

the top that can be lifted off. This will prevent the ball from leaving the board once it is activated by the plunger. The fourth design challenge is mastering the plunger apparatus. This year we ordered 7″ long springs from a pinball machine part supplier. It has been difficult to find springs that are longer than a few inches and are easy enough for students to fully compress. Also, with a thicker edge (1/2″ plywood) and an extra block of wood in the center to guide the rod, we should have a more consistent pushing force. Instead of using pre-threaded rod from a store, we are using smooth rods. We are threading the top and bottom of each smooth rod using a die in the think[box] lab at Case Western Reserve University. Our threading should further enhance the spring driven force and reduce friction. The threading is needed to attach the plunger’s handle and prevent the spring from flying off.

I’m looking forward to sharing this project with a new group of students and yielding even greater results. Stay tuned for more updates on the implementation of this project.

Leave a Comment

Filed under Artist-Educator Experimentation, Arts-Integration